

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW S/05

The HAH1BVW family is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAH1BVW family gives you the choice of having different current measuring ranges in the same housing.

Features

- Ratiometric transducer
- Open Loop transducer using the Hall effect
- · Low voltage application
- Unipolar +5 V DC power supply
- Primary current measuring range ±500 A
- Maximum RMS primary admissible current: defined by busbar to have T < +150 °C
- Operating temperature range: −40 °C < T < 125 °C
- Output voltage: full ratio-metric (in sensitivity and offset).

Advantages

- Excellent accuracy
- · Very good linearity
- Very low thermal offset drift
- · Very low thermal sensitivity drift
- Galvanic separation
- Non intrusive solution.

Automotive application

· Battery Management.

Principle of HAH1BVW Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall voltage, is generated by the primary current I_P to be measured.

The current to be measured $I_{\rm p}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, *B* is proportional to:

$$B(I_p) = a \times I_p$$

The Hall voltage is thus expressed by:

$$V_{\rm H} = (c_{\rm H}/d) \times I_{\rm H} \times a \times I_{\rm P}$$

Except for $I_{\rm p}$, all terms of this equation are constant. Therefore:

$$V_{\rm H} = b \times I_{\rm P}$$
 a constant
 b constant
 $c_{\rm H}$ Hall coefficient
 d thickness of the Hall plate
 $I_{\rm H}$ current across the Hall plates

The measurement signal $V_{\rm H}$ amplified to supply the user output voltage or current.

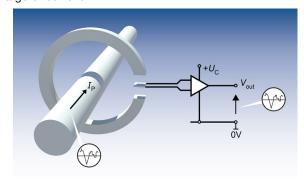
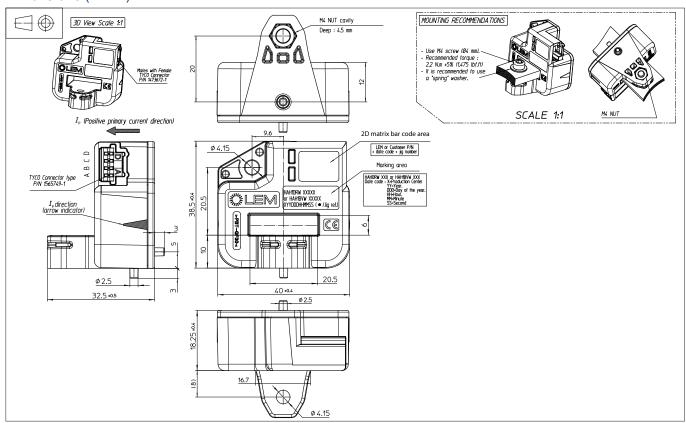



Fig. 1: Principle of the open loop transducer.

Dimensions (in mm)

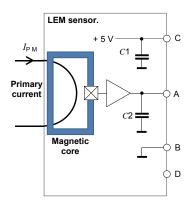
Mechanical characteristics

Plastic case
 PBT GF30

Magnetic core
 FeSi wound core

Mass 57 g ±5 %

Pins Brass tin plated

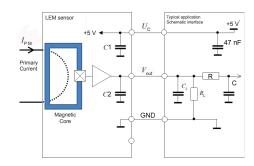

• IP level IPx2.

Mounting recommendation

• Mating connector type TYCO connector P/N 1473672-1

• Assembly torque 2.2 N·m ±5 %.

Electronic schematic


Components list						
IC	Hall sensor ASIC					
C1	Decoupling capacitor	100 nF				
C2	EMC protection capacitor	68 nF				

	Pin out					
Α	$V_{ m out}$					
В	GND					
С	U _c (5 V)					
D	not connected					

Remark

• $V_{\rm out}$ > $V_{\rm o}$ when $I_{\rm p}$ flows in the positive direction (see arrow on drawing).

System architecture (example)

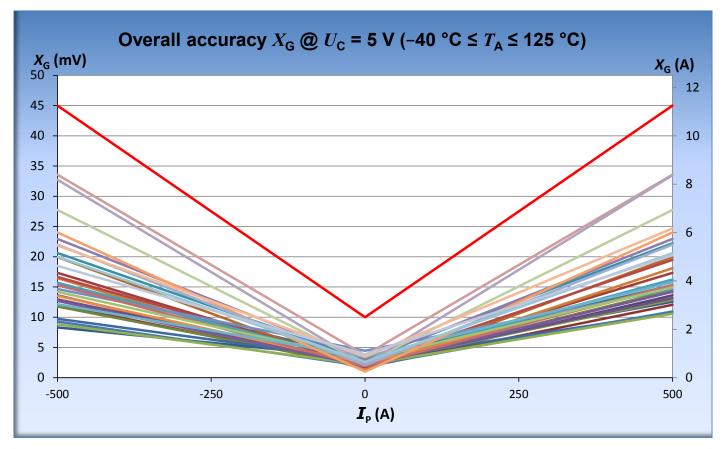
 $C_{\rm L}$ < 100 nF EMC protection (optional) RC Low pass filter (optional)

On board diagnostic

 $R_1 > 10 \text{ k}\Omega$. Resistor for signal line diagnostic (optional)

$V_{ m out}$	Diagnostic			
Open circuit	V _{IN} ≤ 0.15 V			
Short GND	V _{IN} ≤ 0.15 V			

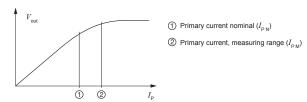
Absolute ratings (not operating)


Parameter	Symbol	Unit	Specification			Conditions
raiailletei	Syllibol		Min	Typical	Max	Conditions
Maximum supply voltage	$U_{\rm C\; max}$	V			14	
Maximum reverse supply voltage	$U_{\mathrm{C\ max}}$	V	-14			
Maximum output voltage	V _{out max}	V	-14		14	$V_{ m out}$ Reverse / Forward voltage
Maximum output current	$I_{ m out\; max}$	mA	-10		10	
Ambient storage temperature	T_{S}	°C	-40		125	
Electrostatic discharge voltage (HBM)	U_{ESD}	kV			8	
Maximum admissible vibration (random RMS)	$\gamma_{\rm max}$	m·s⁻²			96.6	10 to 2000 Hz, -40 °C to 125 °C
RMS voltage for AC insulation test	U_{d}	kV			2.5	50 Hz, 1 min
Creepage distance	d_{Cp}	mm	4.85			
Clearance	d_{CI}	mm	4.85			
Comparative tracking index	CTI			PLC3		

Operating characteristics in nominal range ($I_{\rm P\,N}$)

Parameter	neter Symbol Unit Specification		Conditions			
Parameter	Syllibol			Typical	Max	Conditions
Electrical Data						
Primary current, measuring range	I_{PM}	Α	-500		500	
Primary nominal RMS current	I_{PN}	Α	-500		500	
Supply voltage	U_{C}	V	4.5	5	5.5	
Ambient operating temperature	T_{A}	°C	-40		125	
Output voltage	$V_{ m out}$	V	$V_{\text{out}} = 0$	$(U_{\rm c}/5) \times (V$	$(G + G \times I_P)$	
Sensitivity	G	mV/A		4		@ T _A = 25 °C
Offset voltage	V_{\circ}	V		2.5		
Output resolution		mV		2.5		
Output clamping high voltage	V _{sz}		4.74			@ U _c = 5 V
Output clamping low voltage	V _{sz}				0.26	@ U _C = 5 V
Command and a second se	7	^		7		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V
Current consumption	I_{C}	mA			10	
Load resistance	R_{L}	ΚΩ	10			
Output internal registeres		Ω		1		@ T _A = 25 °C
Output internal resistance	$R_{\rm out}$				10	
		Perf	ormance	Data		
Ratiometricity error	$\varepsilon_{\rm r}$	%		±0.2		
Sensitivity error	$\varepsilon_{_G}$	%		±1		$\textcircled{0}$ T_{A} = 25 °C, $\textcircled{0}$ U_{C} = 5 V
Electrical offset voltage	VoE	mV		±2.5		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V
Magnetic offset voltage	V_{OM}	mV		±2		$\textcircled{0}$ U_{C} = 5 V, $\textcircled{0}$ T_{A} = 25 °C
Linearity error	ε_{L}	%	-1		1	% of full scale
Average temperature coefficient of $V_{\rm OE}$	TCV _{OEAV}	mV/°C		±0.06		
Average temperature coefficient of G	TCG _{AV}	%/°C		±0.02		
Step response time @ 90 %	t _r	ms			10	
Frequency bandwidth	BW	Hz		70		@ -3 dB
Peak-to-peak noise voltage	V_{nopp}	mV			10	DC to 1 MHz
Output RMS noise voltage	V _{no}	mV			1.6	
Start-up time	t _{start}	ms			1	
Setting time after overload	t _s	ms			10	

Overall accuracy $X_{\rm G}$



	Overall accuracy X_{c} specification							
I _P (A)	$T_{\mathtt{A}}$	= 25 °C, $U_{\rm c}$ = 5	v	−40 °C ≤ $T_{\rm A}$ ≤ 125 °C, $U_{\rm c}$ = 5 V				
-500	25 mV	6.25 A	1.25 %	45 mV	11.25 A	2.25 %		
0	7 mV	1.75 A	0.35 %	10 mV	2.50 A	0.50 %		
500	25 mV	6.25 A	1.25 %	45 mV	11.25 A	2.25 %		

PERFORMANCES PARAMETERS DEFINITIONS

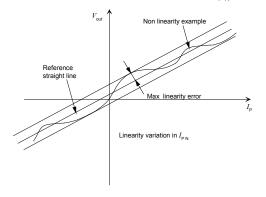
Primary current definition:

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product.

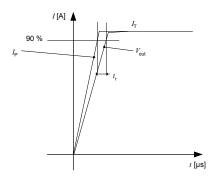
Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.


Magnetic offset:

The magnetic offset is the consequence of an any current on the primary side. It's defined after a stated excursion of primary current.

Linearity:


The maximum positive or negative discrepancy with a reference straight line $V_{\rm out}$ = $f(I_{\rm P})$.

Unit: linearity (%) expressed with full scale of I_{PN} .

Response time (delay time) t:

The time between the primary current signal $(I_{\rm P\ N})$ and the output signal reach at 90 % of its final value.

Sensitivity:

The transducer's sensitivity G is the slope of the straight line $V_{\text{out}} = f(I_{\text{p}})$, it must establish the relation:

$$V_{\text{out}}(I_{\text{P}}) = U_{\text{C}}/5 (G \times I_{\text{P}} + V_{\text{O}})$$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 $^{\circ}$ C.

The offset variation $I_{\rm O\ \it T}$ is a maximum variation the offset in the temperature range:

$$I_{OT} = I_{OE} \max - I_{OE} \min$$

The offset drift $TCI_{\rm O~E~AV}$ is the $I_{\rm O~T}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 $^{\circ}$ C.

The sensitivity variation G_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range: G_{τ} = (Sensitivity max – Sensitivity min) / Sensitivity at 25 °C.

The sensitivity drift TCG_{AV} is the G_{τ} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0$ A:

The offset voltage is the output voltage when the primary current is zero. The ideal value of $V_{\rm O}$ is $U_{\rm C}/2$. So, the difference of $V_{\rm O}$ – $U_{\rm C}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem. com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.

Name	Standard					
CHARACTERIZATION @ 25 °C						
Sensitivity / Accuracy / Overall accuracy	LEM 98.20.00.574.0					
Offset / Electrical Offset / Magnetic Offset	LEM 98.20.00.573.0					
Linearity error	LEM 98.20.00.370.0					
Current Consumption	LEM 98.20.00.579.0					
CHARACTERIZATION	WITH T°C (initial)					
Sensitivity / Accuracy / Overall accuracy	LEM 98.20.00.574.0					
T °C variation of / Temperature Coefficient of G	LEM 98.20.00.574.0					
Offset / Electrical Offset / Magnetic Offset	LEM 98.20.00.573.0					
T °C variation of /Temperature Coefficient of Offset	LEM 98.20.00.573.0					
Linearity error	LEM 98.20.00.370.0					
Current Consumption	LEM 98.20.00.579.0					
ELECTRICAL TE	STS @ 25 °C					
Dielectric withstand Voltage test	2500 V AC / 1 min / 50 Hz					
Insulation resistance test	500 V DC, time = 60 s R_{INS} ≥ 500 MΩ Minimum					
ENVIRONMENTAL TI	ESTS (CLIMATIC)					
Thermal shock	IEC 60068-2-14 Na (01/2009)					
Steady state T°C Humidity bias life test	JESD 22-A101 (03/2009)					
MECHANICAL TESTS						
Vibration random in T°C	IEC 60068-2-64 (02/2008)					
Shocks	IEC 60068-2-27 (02/2008)					
Free Fall (Device not packaged)	IEC 60068-2-31 §5.2: method 1 (05/2008)					
FINAL CHARACTERIZATION						
Characterization @ 25 °C						
Characterization with temperature						